Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cells ; 13(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474401

RESUMO

Fabry disease (FD) is an X-linked recessive inheritance lysosomal storage disorder caused by pathogenic mutations in the GLA gene leading to a deficiency of the enzyme alpha-galactosidase A (α-Gal A). Multiple organ systems are implicated in FD, most notably the kidney, heart, and central nervous system. In our previous study, we identified four GLA mutations from four independent Fabry disease families with kidney disease or neuropathic pain: c.119C>A (p.P40H), c.280T>C (C94R), c.680G>C (p.R227P) and c.801+1G>A (p.L268fsX3). To reveal the molecular mechanism underlying the predisposition to Fabry disease caused by GLA mutations, we analyzed the effects of these four GLA mutations on the protein structure of α-galactosidase A using bioinformatics methods. The results showed that these mutations have a significant impact on the internal dynamics and structures of GLA, and all these altered amino acids are close to the enzyme activity center and lead to significantly reduced enzyme activity. Furthermore, these mutations led to the accumulation of autophagosomes and impairment of autophagy in the cells, which may in turn negatively regulate autophagy by slightly increasing the phosphorylation of mTOR. Moreover, the overexpression of these GLA mutants promoted the expression of lysosome-associated membrane protein 2 (LAMP2), resulting in an increased number of lysosomes. Our study reveals the pathogenesis of these four GLA mutations in FD and provides a scientific foundation for accurate diagnosis and precise medical intervention for FD.


Assuntos
Autofagia , Doença de Fabry , alfa-Galactosidase , Humanos , alfa-Galactosidase/genética , Autofagia/genética , Doença de Fabry/genética , Lisossomos/metabolismo , Mutação
2.
Sci Bull (Beijing) ; 69(7): 922-932, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331707

RESUMO

Neoantigen cancer vaccines have been envisioned as one of the most promising means for cancer therapies. However, identifying neoantigens for tumor types with low tumor mutation burdens continues to limit the effectiveness of neoantigen vaccines. Herein, we proposed a "hit-and-run" vaccine strategy which primes T cells to attack tumor cells decorated with exogenous "neo-antigens". This vaccine strategy utilizes a peptide nanovaccine to elicit antigen-specific T cell responses after tumor-specific decoration with a nanocarrier containing the same peptide antigens. We demonstrated that a poly(2-oxazoline)s (POx) conjugated with OVA257-264 peptide through a matrix metalloprotease 2 (MMP-2) sensitive linker could efficiently and selectively decorate tumor cells with OVA peptides in vivo. Then, a POx-based nanovaccine containing OVA257-264 peptides to elicit OVA-specific T cell responses was designed. In combination with this hit-and-run vaccine system, an effective vaccine therapy was demonstrated across tumor types even without OVA antigen expression. This approach provides a promising and uniform vaccine strategy against tumors with a low tumor mutation burden.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Epitopos , Antígenos de Neoplasias , Neoplasias/terapia , Peptídeos
3.
Front Oncol ; 14: 1274034, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313802

RESUMO

In lung cancer, metastasis to the liver, bones, brain, and adrenal glands is more commonly observed, whereas pancreatic metastasis from lung cancer is relatively rare. We present a case of a patient with an 8-year history of lung adenocarcinoma (LUAD) who was admitted to our institution exhibiting symptoms consistent with acute pancreatitis. Subsequent histopathological examination through puncture confirmed the occurrence of pancreatic metastasis originating from small cell lung cancer (SCLC). During a multidisciplinary team discussion, we reached a consensus in diagnosing the patient with post-transformation small cell carcinoma alongside moderately severe pancreatitis, which was determined to be a consequence of pancreatic metastasis. The patient received a regimen of etoposide and cisplatin chemotherapy. This unique clinical case highlights the importance of further investigating the factors contributing to pancreatic metastasis in patients with lung cancer, as the underlying mechanisms remain unclear. Understanding these exceptional metastatic events is vital in devising effective therapeutic strategies and improving patient prognosis. Our findings emphasize the need for continued surveillance and comprehensive management of lung cancer patients, particularly those with resistant forms of the disease, to promptly identify and address the progression of metastatic events to uncommon sites such as the pancreas.

4.
Opt Lett ; 49(1): 41-44, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134147

RESUMO

The plasma filament induced by photo-ionization in transparent media (e.g., air) is a competitive terahertz (THz) source, whose mechanism has been widely studied in two separate schemes, i.e., the one- or two-color femtosecond laser filamentation. However, the physical commonality of these two schemes is less explored currently, and a common theory is in urgent need. Here, we proposed the traveling-wave antenna (TWA) model applicable to both single- and dual-color laser fields, which successfully reproduced the reported far-field THz angular distribution/dispersion from different filament lengths with either a constant or a varied plasma density. This work paves the way toward a deeper understanding of the important laser-filament-based THz sources within the same theoretical framework.

5.
Front Nutr ; 10: 1243908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810930

RESUMO

Purpose: Helicobacter pylori infection is a well-established etiological factor for gastric inflammation and a significant risk factor for the development of gastric cancer. However, the precise relationship between dietary zinc intake and seropositivity for Helicobacter pylori remains uncertain. Methods: This cross-sectional observational study utilized data from the United States National Health and Nutrition Examination Survey conducted between 1999 and 2000. The study cohort comprised 2,884 adults aged 20 years or older who provided comprehensive 24-h dietary recall data. The presence of Helicobacter pylori infection was confirmed using serum analysis and lgG protein enzyme-linked immunosorbent assay (ELISA). Multivariable logistic regression models and generalized additive model (GAM) were employed to explore the potential association between dietary zinc intake and Helicobacter pylori seropositivity. Results: Additionally, subgroup analysis was performed to evaluate the robustness of the primary findings. Of the 1,281 participants, 47.8% were male and the average age was 49.5 years. In the fully adjusted model, a statistically significant inverse association between dietary zinc intake and Helicobacter pylori seropositivity was observed [quartile variable, Q4 vs. Q1, odds ratio (OR): 0.72, 95% confidence interval (CI): 0.57-0.91, p = 0.007]. Furthermore, the relationship between dietary zinc intake and Helicobacter pylori seropositivity exhibited an L-shaped pattern, indicating a saturation effect. The results of sensitivity analysis remained consistent and reliable. Conclusion: Therefore, this study suggests that higher dietary zinc intake may be associated with a lower prevalence of Helicobacter pylori seropositivity. Notably, this association follows an L-shaped pattern, with a threshold point estimated at 24.925 mg/day.

6.
ACS Biomater Sci Eng ; 9(7): 4108-4116, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-35653749

RESUMO

OX40 (CD134, TNFRSF4) is a member of the tumor necrosis factor receptor superfamily that can be activated by its cognate ligand OX40L (CD252, TNFSF4) and functions as a pair of T cell costimulatory molecules. The interaction between OX40 and OX40L (OX40/OX40L) plays a critical role in regulating antitumor immunity, including promoting effector T cells expansion and survival, blocking natural regulatory T cells (Treg) activity, and antagonizing inducible Treg generation. However, current OX40 agonists including anti-OX40 monoclonal antibodies (aOX40) have serious side effects after systemic administration, which limits their clinical success and application. Herein, we propose a strategy to reprogram tumor cells into OX40L-expressing "artificial" antigen-presenting cells (APCs) by OX40L plasmid-loaded nanoparticles for boosting antitumor immunity in situ. A novel gene transfection carrier was prepared by a modular hierarchical assembly method, which could efficiently transfect various tumor cells and express OX40L proteins on their surface. These surface-decorated OX40L proteins were proved to stimulate T cell proliferation in vitro while stimulating strong antitumor immune responses in vivo. Importantly, this in situ reprogramming strategy did not induce any toxicity as observed in aOX40 treatment, thus providing a novel method for immune checkpoint stimulator application.


Assuntos
Neoplasias , Ligante OX40 , Humanos , Ligante OX40/genética , Ligante OX40/metabolismo , Linfócitos T Reguladores/metabolismo , Ativação Linfocitária , Neoplasias/tratamento farmacológico
7.
Front Mol Biosci ; 9: 1056179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406266

RESUMO

[This corrects the article DOI: 10.3389/fmolb.2022.881794.].

8.
Front Oncol ; 12: 945896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033489

RESUMO

Ion channels modulate the flow of ions into and out of a cell or intracellular organelle, leading to generation of electrical or chemical signals and regulating ion homeostasis. The abundance of ion channels in the plasma and intracellular membranes are subject to physiological and pathological regulations. Abnormal and dysregulated expressions of many ion channels are found to be linked to cancer and cancer chemo-resistance. Here, we will summarize ion channels distribution in multiple tumors. And the involvement of ion channels in cancer chemo-resistance will be highlighted.

9.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887116

RESUMO

Transient receptor potential (TRP) ion channels are cationic permeable proteins located on the plasma membrane. TRPs are cellular sensors for perceiving diverse physical and/or chemical stimuli; thus, serving various critical physiological functions, including chemo-sensation, hearing, homeostasis, mechano-sensation, pain, taste, thermoregulation, vision, and even carcinogenesis. Dysregulated TRPs are found to be linked to many human hereditary diseases. Recent studies indicate that TRP ion channels are not only involved in sensory functions but are also implicated in regulating the biological characteristics of stem cells. In the present review, we summarize the expressions and functions of TRP ion channels in stem cells, including cancer stem cells. It offers an overview of the current understanding of TRP ion channels in stem cells.


Assuntos
Canais de Potencial de Receptor Transitório , Membrana Celular/metabolismo , Humanos , Dor , Sensação/fisiologia , Células-Tronco/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
10.
Front Mol Biosci ; 9: 881794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35775082

RESUMO

Head and neck squamous cell carcinoma (HNSCC), originating from the mucosal epithelial cells of the oral cavity, pharynx, and larynx, is a lethal malignancy of the head and neck. Patients with advanced and recurrent HNSCC have poor outcomes due to limited therapeutic options. Exosomes have active roles in the pathophysiology of tumors and are suggested as a potential therapeutic target of HNSCC. Exosomes in HNSCC have been intensively studied for disease activity, tumor staging, immunosuppression, and therapeutic monitoring. In this review, the biological mechanisms and the recent clinical application of exosomes are highlighted to reveal the potential of exosomes as biomarkers and therapeutic targets for HNSCC.

11.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456964

RESUMO

TRPV4 (transient receptor potential vanilloid 4), a calcium permeable TRP ion channel, is known to play a key role in endocytosis. However, whether it contributes to exocytosis remains unclear. Here, we report that activation of TRPV4 induced massive exocytosis in both melanoma A375 cell and heterologous expression systems. We show here that, upon application of TRPV4-specific agonists, prominent vesicle priming from endoplasmic reticulum (ER) was observed, followed by morphological changes of mitochondrial crista may lead to cell ferroptosis. We further identified interactions between TRPV4 and folding/vesicle trafficking proteins, which were triggered by calcium entry through activated TRPV4. This interplay, in turn, enhanced TRPV4-mediated activation of folding and vesicle trafficking proteins to promote exocytosis. Our study revealed a signaling mechanism underlying stimulus-triggered exocytosis in melanoma and highlighted the role of cellular sensor TRPV4 ion channel in mediating ferroptosis.


Assuntos
Ferroptose , Melanoma , Cálcio/metabolismo , Canais de Cálcio , Exocitose/fisiologia , Humanos , Canais de Cátion TRPV/metabolismo
12.
Biomaterials ; 284: 121489, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364489

RESUMO

Using nanotechnology for cancer vaccine design holds great promise because of the intrinsic feature of nanoparticles in being captured by antigen-presenting cells (APCs). However, there are still obstacles in current nanovaccine systems in achieving efficient tumor therapeutic effects, which could partially be attributed to the unsatisfactory vaccine carrier design. Herein, we report a mannan-decorated pathogen-like polymeric nanoparticle as a protein vaccine carrier for eliciting robust anticancer immunity. This nanovaccine was constructed as a core-shell structure with mannan as the shell, polylactic acid-polyethylenimine (PLA-PEI) assembled nanoparticle as the core, and protein antigens and Toll-like receptor 9 (TLR9) agonist CpG absorbed onto the PLA-PEI core via electrostatic interactions. Compared to other hydrophilic materials, mannan decoration could greatly enhance the lymph node draining ability of the nanovaccine and promote the capturing by the CD8+ dendritic cells (DCs) in the lymph node, while PLA-PEI as the inner core could enhance antigen endosome escape thus promoting the antigen cross-presentation. In addition, mannan itself as a TLR4 agonist could synergize with CpG for maximally activating the DCs. Excitingly, we observed in several murine tumor models that using this nanovaccine alone could elicit robust immune response in vivo and result in superior anti-tumor effects with 50% of mice completely cured. This study strongly evidenced that mannan decoration and a rationally designed nanovaccine system could be quite robust in tumor vaccine therapy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Adjuvantes Imunológicos/química , Animais , Células Dendríticas , Imunoterapia , Mananas , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Neoplasias/tratamento farmacológico , Poliésteres/uso terapêutico , Polímeros/uso terapêutico
13.
Reprod Domest Anim ; 57(6): 653-664, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35247007

RESUMO

Immunocastration vaccines achieve their effects through neutralization of the endogenous hormone by the humoral antibody produced against the immunized genes, but there is little information regarding cell-mediated immune response on the gonadal function of the immunized model is available. In this study, we used ram as a model animal to identify the cellular immune response in testicular tissues of rams immunized with intranasal KISS1 gene vaccine. The immune castration model was evaluated by sexual behaviours, spermatogenesis and serum hormone profiles after the KISS1 gene immunization. Transcriptome analysis of testicular tissues was carried out to identify the expressions of protein-coding genes involved in cellular immunity. The results showed that we successfully constructed the KISS1 immune castration ram model, in which testicular growth and development, testosterone and kisspeptin-54 levels, and sexual function were suppressed in immunized rams (p < .05). Using Hiseq™ 2000 high sequencing for ram testicular, we identified 21 differentially expressed genes (DEGs) related to cellular immunity, of which, 14 genes were upregulated and seven genes were downregulated in the testis of the immunized group (p < .05). The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that these differentially expressed genes were enriched in the antigen presentation process mediated by MHC class I and the cytotoxic pathway mediated by natural killer cells. It is concluded that KISS1 gene vaccine induced the cell-mediated immune response in testicular tissue to suppress reproductive activities in rams.


Assuntos
Kisspeptinas , Vacinas , Animais , Imunidade Celular , Kisspeptinas/genética , Masculino , Orquiectomia/métodos , Orquiectomia/veterinária , Carneiro Doméstico , Testículo/fisiologia , Testosterona , Transcriptoma
14.
Talanta ; 243: 123353, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35248944

RESUMO

Globotriose (Gal-α1, 4-Gal-ß1, 4-Glc) is involved in binding with Shiga toxins (Stxs) produced by Shigella dysenteriae and certain pathogenic Escherichia coli strains which could cause severe gastroenteritis and hemolytic uremic syndrome (HUS). Thus, this trisaccharide group and its derivatives provide potentials in the development of carbohydrate-based diagnostic and therapeutic reagents against bacterial infection. Instead of the tedious chemical synthesis of globotriose or its glycoconjugates, we reported a multi-step (step-wise) enzymatic synthesis system containing glucosyltransferase (ApNGT, E.C. 4.3.3.5), ß-1, 4-galactosyltransferase (LgtB, E.C. 2.4.1.22) and α-1, 4-galactosyltransferase (LgtC, E.C. 2.4.1.44) to produce globotriose-containing glycopeptides. In addition, based on the specific binding between Stxs and globotriose, a cost-efficient, convenient, ultra-sensitive and specific colorimetric biosensor was further constructed to detect Stxs using glycoconjugated Au@Fe-TFPA-COP (globotriose@Au@Fe-TFPA-COP) as a nanoenzyme catalyst. We estimate that this method conveniently applied in the detection of Stx-producing bacteria and associated infectious diseases.


Assuntos
Técnicas Biossensoriais , Toxinas Shiga , Colorimetria , Peptídeos , Trissacarídeos/química
15.
Adv Mater ; 34(10): e2109254, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34984753

RESUMO

In recent years, significant evolutions have been made in applying nanotechnologies for prophylactic and therapeutic cancer vaccine design. However, the clinical translation of nanovaccines is still limited owing to their complicated compositions and difficulties in the spatiotemporal coordination of antigen-presenting cell activation and antigen cross-presentation. Herein, a minimalist binary nanovaccine (BiVax) is designed that integrates innate stimulating activity into the carrier to elicit robust antitumor immunity. The authors started by making a series of azole molecules end-capped polyethylenimine (PEI-M), and were surprised to find that over 60% of the PEI-M polymers have innate stimulating activity via activation of the stimulator of interferon genes pathway. PEI-4BImi, a PEI-M obtained from a series of polymers, elicits robust antitumor immune responses when used as a subcutaneously injected nanovaccine by simply mixing with ovalbumin antigens, and this BiVax system performs much better than the traditional ternary vaccine system, as well as, commercialized aluminum-containing adjuvants. This system also enables the fast preparation of personalized BiVax by compositing PEI-4BImi with autologous tumor cell membrane protein antigens, and a 60% postoperative cure rate is observed when combined with immune checkpoint inhibitors.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Animais , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia
16.
Enzyme Microb Technol ; 154: 109949, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34864335

RESUMO

N-glycosylation is one of the most important post-translational modifications of proteins. Cytoplasmic soluble N-glycosyltransferase (NGT) exists in bacteria, which is able to transfer different monosaccharide from sugar nucleotide to the NXS/T(X ≠ Pro) consensus sequence in a polypeptide. At present, the NGT enzymes reported could transfer a variety of different sugars to protein, which will lead to the heterogeneity of the sugar chain and the complexity and instability of the structure and function of glycopeptides. According to the FuncLib algorithm, we obtained mutant ApNGT-P1 from ApNGT (the NGT from Actinobacillus pleuropneumoniae) with increased substrate specificity. Compared with the wild-type ApNGT, mutant ApNGT-P1 could only utilize UDP-Glc as sugar donors. The optimum temperature of ApNGT-P1 was about 40 °C and the optimum pH was 7.5-8.0 in PBS buffer. ApNGT-P1 exhibited better tolerance for K+, Mn2+, Ca2+, and Mg2+, but was strongly inhibited by Na+, Cu2+ and Zn2+. The mutant can be applied to the efficient production of glycosylated peptides or proteins with uniform glucose at their glycosylation sites. Besides, this work provided a feasible pathway for further studies on the improving donor substrates selectivity of NGTs.


Assuntos
Actinobacillus pleuropneumoniae , Glicosiltransferases , Actinobacillus pleuropneumoniae/metabolismo , Glicopeptídeos , Glicosilação , Glicosiltransferases/metabolismo , Especificidade por Substrato , Açúcares
17.
Biomater Sci ; 9(20): 6879-6888, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34505857

RESUMO

Cancer vaccines artificially stimulate the immune system against cancer and are considered the most promising treatment of cancer. However, the current progress in vaccine research against cancer is still limited and slow, partially due to the difficulties in identifying and obtaining tumor-specific antigens. Considering surgery as the first choice for tumor treatment in most cases, the authors evaluated whether the resected tumor can be directly used as a source of tumor antigens for designing personalized cancer vaccines. Based on this idea, herein, the authors report a dynamic covalent hydrogel-based vaccine (DCHVax) for personalized postsurgical management of tumors. The study uses proteins extracted from the resected tumor as antigens, CpG as the adjuvant, and a multi-armed poly(ethylene glycol) (8-arm PEG)/oxidized dextran (ODEX) dynamically cross-linked hydrogel as the matrix. Subcutaneous injection of DCHVax recruits dendritic cells to the matrix in situ and elicits robust tumor-specific immune responses. Thus, it effectively inhibits the postoperative growth of the residual tumor in several murine tumor models. This simple and personalized method to develop cancer vaccines may be promising in developing clinically relevant strategies for postoperative cancer treatment.


Assuntos
Vacinas Anticâncer , Neoplasias , Adjuvantes Imunológicos , Animais , Antígenos de Neoplasias , Hidrogéis , Camundongos , Neoplasias/tratamento farmacológico
18.
Adv Healthc Mater ; 10(20): e2100862, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34347370

RESUMO

Surgery remains the most preferred treatment options for colorectal cancer (CRC). Paradoxically, local recurrence and distant metastasis are usually accelerated postsurgery as a consequence of local and systemic immunosuppression caused by surgery. Therefore, modulating tumor postoperative immune microenvironment and activating systemic antitumor immunity are necessary supplementaries for CRC therapy. Here, an in-situ-sprayed immunotherapeutic gel loaded with anti-OX40 antibody (iSGels@aOX40) is reported for CRC postsurgical treatment. The iSGel is formed instantly after spraying with strong adhesion ability via crosslinking between tannic acid (TA) and poly(l-glutamic acid)-g-methoxy poly(ethylene glycol)/phenyl boronic acid (PLG-g-mPEG/PBA). TA not only serves as one component of the iSGel but also relieves the postsurgical immunosuppressive microenvironment by inhibiting the activity of cyclo-oxygenase-2 (COX-2). The aOX40 serves as an immune agonistic antibody and is released from the iSGel in a constant manner lasting for over 20 days. In a subcutaneous murine CRC model, the iSGels@aOX40 results in complete inhibition on tumor recurrence. In addition, the cured mice show resistance to tumor re-challenge, suggesting that immune memory effects are established after the iSGels@aOX40 treatment. In an orthotopic CRC peritoneal metastatic model, the iSGels@aOX40 also remarkably inhibits the growth of the abdominal metastatic tumors, suggesting great potential for clinical CRC therapy.


Assuntos
Neoplasias Colorretais , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Imunoterapia , Camundongos
19.
Adv Mater ; 33(7): e2007293, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33448050

RESUMO

Using nanotechnology for improving the immunotherapy efficiency represents a major research interest in recent years. However, there are paradoxes and obstacles in using a single nanoparticle to fulfill all the requirements in the complicated immune activation processes. Herein, a supramolecular assembled programmable immune activation nanomedicine (PIAN) for sequentially finishing multiple steps after intravenous injection and eliciting robust antitumor immunity in situ is reported. The programmable nanomedicine is constructed by supramolecular assembly via host-guest interactions between poly-[(N-2-hydroxyethyl)-aspartamide]-Pt(IV)/ß-cyclodextrin (PPCD), CpG/polyamidoamine-thioketal-adamantane (CpG/PAMAM-TK-Ad), and methoxy poly(ethylene glycol)-thioketal-adamantane (mPEG-TK-Ad). After intravenous injection and accumulation at the tumor site, the high level of reactive oxygen species in the tumor microenvironment promotes PIAN dissociation and the release of PPCD (mediating tumor cell killing and antigen release) and CpG/PAMAM (mediating antigen capturing and transferring to the tumor-draining lymph nodes). This results in antigen-presenting cell activation, antigen presentation, and robust antitumor immune responses. In combination with anti-PD-L1 antibody, the PIAN cures 40% of mice in a colorectal cancer model. This PIAN provides a new framework for designing programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Vacinas Anticâncer/química , Neoplasias Colorretais/imunologia , Dendrímeros/química , Animais , Células Apresentadoras de Antígenos , Antineoplásicos/farmacologia , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Interleucina-6/metabolismo , Camundongos , Neoplasias Experimentais , Polietilenoglicóis/química , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo , beta-Ciclodextrinas/farmacologia
20.
Macromol Biosci ; 21(2): e2000207, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33107202

RESUMO

Cancer immunotherapy is redefining the field of cancer therapy. However, current cancer immunotherapies are limited by insufficient immune activation, which results in low response rate. Herein, polyethyleneimine-CpG nanocomplex (CpG@PEI) is reported as an in situ vaccine for boosting anticancer immunity in melanoma. CpG, a Toll-like receptor (TLR) 9 agonist, can activate antigen-presenting cells and increase the expression of costimulatory molecules, while PEI can help to enhance the stability and cellular internalization of CpG. It is proved that PEI loading can significantly enhance the cellular internalization and immune stimulation ability of CpG, and the CpG@PEI nanocomplex can effectively inhibit murine B16F10 melanoma growth after intratumoral injection. Further analysis reveals that this CpG@PEI nanocomplex therapy elicits both innate and adaptive immunity, with much increased natural killer (NK) cells and T cells infiltration in the tumor, as well as CD80 expression on the dendritic cells (DCs). This study will inspire more attempts in directly using single nanoparticle-loaded pattern recognition receptor (PRR) agonists for cancer immunotherapy.


Assuntos
Vacinas Anticâncer/imunologia , Melanoma Experimental/imunologia , Nanopartículas/química , Oligodesoxirribonucleotídeos/química , Polietilenoimina/química , Neoplasias Cutâneas/imunologia , Animais , Endocitose , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Células RAW 264.7 , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA